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Abstract. The density functional theory of freezing has been recently extended 
to treat quantum liquids. Here, we consider three approximations of the weighted- 
density type for the freezing of jellium at T = 0. The agreement with a simulation of 
the predicted freezing parameters varies from satisfactory to very good, depending 
on the approximation. 

1. Introduction 

The modern theory of freezing [l] relies crucially on the use of density functional 
theory (DFT). Using information on the structural and thermodynamic properties 
of the uniform liquid, the method leads to predictions for various properties of the 
coexisting periodic solid. One of the advantages of DFT is that one can treat both 
classical and quantum systems on the same footing, in terms of the Helmholtz free 
energy functional F[n], 4.1 = F,[n] + Fex[n]. Approximate theories readily arise from 
the approximation of the excess free energy Fex[n], whereas the classical or quantum 
nature of the problem-and therefore the statistics-appears explicitly [2,3] only in 
the construction of the non-interacting particle free energy F,[n]. 

The recent development of a quantum density functional theory of freezing has 
followed two complementary routes. In one case [4], the mapping of quantum particles 
onto classical polymeric chains is exploited, employing the path-integral formalism. 
This approach, which has been used to study 4He, by its very nature seems to be 
preferable for systems at  not too low temperature. Also, it does not appear suitable 
to the treatment of Fermi systems. In the other case [5,6], the Hohenberg-Kohn-Sham 
(HKS) formalism is invoked, to map the problem onto a band structure calculation. 
This approach can naturally cope with both Bose and Fermi systems. Contrary to 
the path-integral formalism, however, it is best suited for zero or small temperatures. 
Zero-temperature applications have been presented so far, for jellium [5] and Bose 
hard spheres [6]. 

An additional reason for which DFT is crucial to the theory of freezing is that 
it provides a systematic way to  approximate Fe,[n], using liquid information. Two 
routes have been followed thus far. In one of them [7], the excess free energy of the 
modulated phase is functionally expanded around the homogeneous liquid, usually up 
to second order in the density difference. In the other [8-lo], one tries a mapping of 
the excess free energy density of the modulated system onto the excess free energy 
density of a homogeneous liquid with a suitably chosen weighted density. 
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In this paper, we consider the freezing of jellium a t  T = 0,  using three different 
approximations of the weighted-density type within the HKS formalism. We briefly 
review the approximations, give the results of the various calculations and discuss 
them in relation to  previous calculations. A more extended discussion will be given 
elsewhere [3]. 

2. Weighted-density approximations for jellium 

We consider here three approximate forms of Fe, for jellium-a model system of 
electrons in a uniform neutralizing background with density no. These approximations 
are suitable modifications of known schemes [8-101 to  deal with a charged system. 

The weighted-densitty approximation [9] (WDA) and the modified WDA [8] (MWDA) 
read respectively 

and 

and 

Above, nQ(r)  = n ( ~ )  - no,n,  is the average value of n ( ~ ) ,  which equals no when 
charge neutrality is imposed ( J d r  nQ(r )  = 0), and N = J d r  n ( ~ ) .  Also, cxc(n) is the 
exchange and correlation energy per particle in a jellium with uniform density n. The 
weight functions appearing in ( 3 )  and (4) are determined through the homogeneous 
limit condition 

with Fe, respectively from (1) and (2).  Here, x and xo are the sta.tic linear response 
functions of the interacting and non-interacting uniform liquid. At variance with the 
case of uncharged particles, the weight functions above do not satisfy a normalization 
condition. In fact they contain a long-range Coulomb tail. 

The generalized effective liquid approximation [lo] (GELA), on the other hand, is 
obtained from 

where the effective density functional fi[n] is determined by the additional condition 
of (2), and the kernel K(T - ~ ’ , n )  is defined as in (5). In writing (6) explicit use has 
been made of charge neutrality. 
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3. Results and discussion 

In the HKS formalism, the non-interacting particle free energy is treated exactly 
[2 ,3 ,5] .  This requires the solution of one-particle Schrodinger equations-the Kohn- 
Sham (KS) equations-in a self-consistent potential whose explicit form is fixed by 
the excess free energy functional Fex[n]. We have performed such band structure cal- 
culations for jellium at T = 0 for the three approximations listed above. We have 
considered only the coexistence between spin polarized liquid and BCC solid, and we 
have approximated the kernel K ( r ,  n )  using quantum Monte Carlo (QMC) information 
[ll] as previously discussed [5]. Comparison of the calculated total energy with that  
of the liquid, using an accurate fit [12] to  the QMC data  for exc(n),  locates the freezing 
transition. 

Table 1. Freezing parameters of jellium at T = 0. Acronyms are as in the text. r: 
denotes the Wigner sphere radius in units of Bohr radii; y is the Lindemann ratio 
(root-mean-square deviation divided by the nearest-neighbour distance), and A is the 
effective liquid density, whenever applicable. 

W D A  M W D A  GELA SOT“ Q M C ~  

r: 71 70 100 102 100f20 
Y 0.25 0.23 0.32 0.34 0.30f0.02 
clno 1.35 1.07 

” From [5]. 
From [ll]. 

The results of the present calculations are summarized in table 1, together with the 
results of the second-order theory (SOT) [5] and of QMC. It is clearly seen that,  of the 
various DFT approaches, the GELA appears to provide the best description of freezing 
in jellium. In fact, it yields freezing parameters which are in excellent agreement 
with those (virtually exact) estimated by QMC simulations. Though the results of the 
second-order theory were already very good, the GELA is able to  improve the quality 
of the Lindemann ratio, which now agrees with QMC within the statistical error bar. 
This improvement is obtained at  the cost of the additional effort needed to  determine 
the functional dependence of n ,  along a linear path joining the constant density of the 
uniform liquid to  the modulated density of the periodic solid. 

Evidently, the results obtained from the WDA and MWDA are about equivalent and, 
in particular, both less satisfactory than for the GELA. The freezing r ,  is somewhat 
lower than the lower value given by QMC, considering the error bar. However, there is 
a considerable improvement upon LDA which yields r: = 22. The Lindemann ratio is 
also underestimated. It should be noted that calculations with the MWDA for a totally 
different system (Bose hard spheres) give results [6] of slightly better quality than in 
the present case. However, this is obtained by invoking an a d  hoc scaling of the kernel 
I<(r,n) to  enforce the compressibility sum rule. In comparison with the freezing of 
classical liquids [l], in the quantum case, the comparatively minor knowledge of the 
static response functions makes it more difficult to  separate the issue of the accuracy 
of the theory from the issue of the accuracy of the necessary input. 

An interesting problem in the density functional theory of freezing is the impor- 
tance of non-linear response functions in a systematic expansion of the excess free 
energy of the solid phase around the uniform liquid. Weighted-density theories, in 
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fact, correspond to  an infinite-order resummation of the non-linear response func- 
tions, in an approximate fashion. Comparison with the SOT of the WDA and MWDA, 
on the one hand, and of the GELA, on the other, seems to  yield opposite conclusions. 
However, one should keep in mind the approximate nature of the resummation. It is 
worth stressing, in this respect, the extremely delicate balance of energy terms in the 
freezing of jellium. Thus, the present implementation of the GELA-which directly 
approximates an energy difference-may well be more accurate than that  of the WDA 
and the MWDA, which deal with the full Fex. On the other hand, both the present 
implementation of the GELA and the classical one [lo] contain a somewhat limited 
set of non-linear response functions. In conclusion, we believe that the issue of the 
accuracy of these effective liquid approximations deserves further investigations. 
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